Grafikdan Sifat Fungsi Kuadrat. Secara geometri, fungsi kuadrat memiliki bentuk berupa parabola. Arah parabola bisa ke atas atau ke bawah bergantung pada nilai konstanta a dari fungsi tersebut. Salah satu cara termudah untuk menggambar fungsi kuadrat adalah dengan membuat beberapa pasangan titik dan memindahkannya ke dalam diagram Cartesius.
Perlukalian ketahui bahwa bentuk rumus umum fungsi linear adalah y = f (x) = ax + b dengan a,b anggota dari bilangan real dan a ≠ 0. Oleh karena grafik fungsi linear y = f (x) = ax + b berupa garis lurus, maka persamaan y = ax + b dinamakan persamaan garis lurus. selanjutnya perhatikan penjelasan di bawah ini mengenai cara menggambar garis
Berikutadalah tahapan untuk menggambar grafik fungsi kuadrat y=ax2+bx+c. Menentukan titik potong dengan sumbu koordinat. Titik potong dengan sumbu X apabila y=0. (tidak ada untuk fungsi kuadrat yang mempunyai D<0). Titik Potong dengan sumbu Y apabila x=0. Tentukan titik ekstrim, yakni; Contoh soal: Mari kita bedah bersama fungsi kuadrat dari f
5 Menjelaskan manfaat mempelajari Grafik Fungsi dan Garis Lurus Penyajian Menggambar Grafik 6. Menjelaskan bentuk umum fungsi kuadrat y = ax2 + bx + c atau f(x) = ax2 + bx + c 7. Menjelaskan ciri-ciri grafik fungsi kuadrat Diskriminan (D) 8. Menjelaskan langkah-langkah menggambar grafik fungsi kuadrat berdasarkan nilai diskriminan D dalam
Langkahmudah menggambar grafik fungsi kuadrat dengan desmos kamu bisa membuat grafik fungsi kuadrat dengan mudah menggunakan desmos download dan install des. Saat digambarkan dalam bentuk grafik persamaan kuadrat dalam bentuk ax2 bx c atau a x h 2 k membentuk huruf u atau kurva u terbalik yang disebut parabola. Materi ini diajarkan pada
VfsJzu. MODUL AYU ARDHILLA RAHMA, MATEMATIKA BENTUK UMUM FUNGSI KUADRAT DAN GRAFIK FUNGSI KUADRAT Penulis AYU ARDHILLA RAHMA, PPG DALAM JABATAN ANGKATAN KE-IV UNIVERSITAS NEGERI YOGYAKARTA KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN 2021KOMPETENSI DASAR DAN INDIKATOR PENCAPAIANNo. Kompetensi Dasar Indikator Pencapaian Kompetensi1. Menjelaskan fungsi Menjelaskan definisi fungsi kuadratkuadrat dengan Menentukan nilai-nilai fungsi kuadrat pada tabelmenggunakan tabel, Menentukan pembuat nol dari persamaan kuadratpersamaan, dan grafik Menentukan pasangan koordinat dari fungsi kuadrat pada bidang Cartesius Menghubungkan titik-titik koordinat sebagai grafik fungsi kuadrat2. Menyajikan fungsi Membuat tabel pasangan nilai variabel dan nilai kuadrat fungsi kuadratnya menggunakan tabel, persamaan, dan Menggambar sketsa grafik fungsi kuadrat grafik. Menentukan persamaan fungsi kuadrat jika diketahui titik puncak, titik potong, sumbu simetri atau beberapa titik pada persamaan kuadrat DESKRIPSI MODULDalam modul ini anda akan mempelajari 4 Kegiatan Belajar yang terdiri dari Kegiatan Belajar 1membahas tentang pengertian himpunan, notasi himpunan, dan kardinalitas himpunan, KegiatanBelajar 2 membahas tentang Jenis-jenis himpunan, Kegiatan Belajar 3 membahas tentanghubungan antarhimpunan dan diagram venn, dan Kegiatan Belajar 4 adalah membahas tentangoperasi pada Kegiatan Belajar 1, akan dijelaskan pengertian dan notasi atau lambang himpunan dancara menyatakan suatu himpunan dalam beberapa cara, yaitu dengan kata-kata, denganmendaftar, dan dengan notasi pembentuk himpunan, serta kardinalitas suatu himpunan. DalamKegiatan Belajar 2, akan diuraikan mengenai jenis-jenis himpunan. Dalam kegiatan belajar 3 akandibahas cara menentukan menentukan hubungan antarhimpunan dengan menggunakandiagram venn. Dan dalam kegiatan belajar 4 akan akan dibahas cara menentukan irisan,gabungan, selisih sifat-sifat operasi pada PRASYARATMateri ini merupakan materi lanjutan setalah kamu mempelajari persamaan linear dua variabeldan persamaan kuadrat. Tanpa mempelajari materi-materi itu, kamu akan kesulitan dalammemahami materi fungsi kuadrat ini, karena persamaan linear dua variabel dan persamaankuadrat merupakan materi prasyarat dalam memahami fungsi kuadrat, dan grafik fungsinya. TUJUAN PEMBELAJARANMelalui proses mengamati, menanya, mengumpulkan dan mengolah informasi sertamengkomunikasikan hasil mengolah informasi dalam penugasan individu dan kelompok,peserta didik dapat 1. Menjelaskan definisi fungsi kuadrat dengan benar 2. Membuat tabel pasangan nilai variabel dan nilai fungsi kuadratnya dengan tepat 3. Menentukan pembuat nol dari persamaan kuadrat dengan tepat 4. Menentukan pasangan koordinat dari fungsi kuadrat pada bidang Cartesius dengan tepat 5. Menghubungkan titik-titik koordinat sebagai grafik fungsi kuadrat dengan tepat 6. Menggambar sketsa grafik fungsi kuadrat dengan benar 7. Menjelaskan pengaruh dari koefisien x2 pada fungsi kuadrat fx terhadap karakteristik dari grafik fungsi fx dengan tepat Menentukan fungsi kuadrat jika diketahui grafiknya, titik puncak, titik potong, sumbu simetri atau beberapa titik pada persamaan kuadrat dengan KONSEP Bentuk Umum Tabel Fungsi Grafik terbuka Fungsi Kuadrat Kuadrat keatasFungsi Kuadrat Grafik Fungsi Grafik terbuka Kuadrat kebawah Persamaan Fungsi KuadratURAIAN MATERI Sebelumnya, kalian telah mempelajari persamaan linear dan persamaan kalian masih ingat tentang materi tersebut? Mari kita ulang sebentar materi tersebut. Persamaan Linear Persamaan linear satu variabel adalah kalimat terbuka yang memuat tanda sama dengan = dan hanya memuat satu variabel dengan pangkat satu. Bentuk umum persamaan linear satu variabel adalah ax + b = 0 dan a ≠ 0. Penyelesaian persamaan linear adalah pengganti variabel yang menyebabkan persamaan bernilai 1. 3x + 1 = -7 2. 5m + 4 = 2m +16 Persamaan Kuadrat Persamaan kuadrat satu variabel adalah suatu persamaan yang memiliki pangkat tertingginya dua. Contoh bentuk persamaan kuadrat 2x2 – 8x + 5 = 0 x2 – x + 9 = 0 x2 – 16 = 0 2x x – 5 = 0 Secara umum bentuk persamaan kuadrat adalah ax2+bx+c = 0 dengan a≠0, a,b,c ϵ R. Persamaan kuadrat terbagi menjadi 3, yaitu 1. Persamaan kuadrat lengkap ax2 + bx + c = 0, a ≠ 0 untuk setiap a, b, c ϵ R 2. Persamaan kuadrat tak lengkap ax2 + bx = 0, a ≠ 0 untuk setiap a, b ϵ R 3. Persamaan kuadrat murni ax2 + c = 0, a ≠ 0 untuk setiap a, c ϵ R KEGIATAN BELAJAR 1 Tujuan Pembelajaran KB 1 Melalui proses penemuan dan diskusi kelompok, peserta didik dapat 1. Menjelaskan definisi fungsi kuadrat dengan benar 2. Menentukan nilai-nilai fungsi kuadrat pada tabel secara tepat3. Menentukan pasangan koordinat dari fungsi kuadrat pada bidang Cartesius dengan benar4. Menghubungkan titik-titik koordinat sebagai fungsi kuadrat secara tepatMateri Pembelajarana. Bentuk umum Fungsi KuadratFungsi Kuadrat merupakan suatu fungsiyang berbentuk persamaan umum fungsi kuadratf x = ax2 + bx + c, dengan a ≠ 0Contoh f x = 3x2 + 5x + 7Untuk menentukan nilai-nilai dari fungsi tersebut, maka dapat dilakukan denganmensubstitusi variabel x ke dalam x = -1 maka f-1 = 3. -12 + 5-1 + 7 = 5 x = 0 maka f0 = 3. 02 + 50 + 7 = 7 x = 1 maka f1 = 3. 12 + 51 + 7 = 15 dan seterusnya Menggambar Grafik Fungsi y = ax2Menggambar grafik fungsi kuadrat yang paling sederhana, yakni ketika b = c = mendapatkan grafiknya anda dapat membuat gambar untuk beberapa nilai x dansubsitusikannya pada fungsi y = ax2, misalkan untuk a = 1, a = 2, dan a = -2Untuk mendapatkan grafik suatu fungsi kuadrat, terlebih dahulu harus mendapatkanbeberapa titik koordinat yang dilalui oleh fungsi kuadrat Melengkapi Tabel = = = − x y x,y x y x,y x y x,y-3 9 -3,9 -3 18 -3,18 -3 -18 -3,-18-2 4 -2,4 -2 8 -2,8 -2 -8 -2,-8-1 1 -1,1 -1 2 -1,2 -1 -2 -1,-20 0 0,0 0 0 0,0 0 0 0,01 1 1,1 1 2 1,2 1 -2 1,-22 4 2,4 2 8 2,8 2 -8 2,-83 9 3,9 3 18 3,18 3 -18 3,-18 titik-titik koordinat yang berada dalam tabel pada bidang grafik dengan menghubungkan titik-titik koordinat tersebut Keterangan Kurva y = x2 ditandai dengan warna biru Kurva y = 2x2 ditandai dengan warna hijau Kurva y = -2x2 ditandai dengan warna merahMenggambar Grafik fungsi y = ax2+ cKegiatan ini dibagi menjadi menjadi dua sub kegiatan. Pada kegiatan ini peserta didikmenggambar grafik fungsi y = ax2+ c sebanyak tiga kali, yakni untuk c = 0, c = 2 danc = -21. Melengkapi tabel x,y x = − x,y x = + -3,11 -3 -32 + 2 = 11 -2,6 -3 -32 - 2 = 7 -3,7 -2 -22 + 2 = 6 -1,3 -1 -12 + 2 = 3 0,2 -2 -22 - 2 = 2 -2,2 0 02 + 2 = 2 1,3 1 12 + 2 = 3 2,6 -1 -12 - 2 = -1 -1,-1 2 22 + 2 = 6 3,11 3 32 + 2 = 11 0 02 - 2 = -2 0,-2 1 12 - 2 = -1 1,-1 2 22 - 2 = 2 2,2 3 32 - 2 = 7 3,72. Tempatkan titik-titik koordinat yang berada dalam tabel pada bidang koordinat3. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut Keterangan Kurva y = x2 ditandai dengan warna biru Kurva y = x2 + 2 ditandai dengan warna orange Kurva y= x2 – 2 ditandai dengan warna pinkMenggambar Grafik fungsi y = x2 + bxKegiatan ini akan menjadi tiga sub kegiatan, yakni ketika b = 2, b = -2 dan ketika a =-1. Pada kegiatan ini anda akan mengenal titik puncak dari suatu grafik fungsi Melengkapi tabel dibawah inix = + x,y x = − x,y-3 -32 + 2-3 = 3 -3,3 -3 -32 – 2-3 = 15 -3,15-2 -22 + 2-2 = 0 -2,0 -2 -22 - 2-2 = 8 -2,8-1 -12 + 2-1 = -1 -1,-1 -1 -12 - 2-1 =3 -1,30 02 + 20 = 0 0,0 0 02 - 2 0 = 0 0,01 12 + 21 = 3 1,3 1 12 - 21 = -1 1,-12 22 + 22 = 8 2,8 2 22 - 22 =0 2,03 32 + 23 = 15 3,15 3 32 - 23 =3 3,3x = − + x,y-3 -32 + 2-3 = -15 -3,-15-2 -22 + 2-2 = -8 -2,-8-1 -12 + 2-1 = -3 -1,-30 -02 + 20 = 0 0,01 -12 + 21 = 1 1,12 -22 + 22 = 0 2,03 -32 + 23 = 3 3,32. Tempatkan titik-titik koordinat yang berada dalam tabel pada bidang koordinat3. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut Keterangan Kurva y = x2 + 2x ditandai dengan warna biru Kurva y = x2 – 2x ditandai dengan warna hijau Kurva y = -x2+ 2x ditandai dengan warna merahKEGIATAN BELAJAR 2Tujuan Pembelajaran KB 2 Melalui metode diskusi kelompok, peserta didik dapat 1. Menjelaskan pengaruh dari koefisien x2 pada fungsi kuadrat fx terhadap karakteristik dari grafik fungsi fx, jika diberikan fungsi kuadrat dan dikerjakan secara teliti2. Menentukan sumbu simetri dan nilai optimum fungsi kuadrat dan dikerjakan secara Menentukan titik optimum fungsi kuadrat secara tepatMateri PembelajaranA. Karakteristik Grafik Fungsi Kuadrat Fungsi kuadrat merupakan fungsi yang berbentuk y = ax2 + bx + c, dengan a≠ 0. Grafik dari fungsi kuadrat menyerupai parabola, sehingga dapat dikatakan juga sebagai fungsi parabola Garis putus-putus pada gambar di atas merupakan sumbu simetri. Koordinat yang ditandai dengan bulatan merupakan titik puncak sedangkan koordinat yang ditandai dengan persegi merupakan titik potong dengan sumbu – Y Nilai b pada grafik y = ax2 + bx + c menunjukkan dimana koordinat titik puncak dan sumbu simetri berada titik puncak dan sumbu simetri dibahas lebih lanjut pada sub-bab selanjutnya. Jika a > 0 maka grafiknya y = ax2 + bx + c memiliki titikpuncak minimum. Jika a 0 maka grafiknya akan terbuka ke atas Jika a 0 dan nilai a makin besar maka grafiknya akan semakin “kurus” Jika a 0 maka grafiknya akan terbuka ke atas- Jika a 0 dan nilai a makin besar maka grafiknya akan semakin “kurus” - Jika a 0 dan bergeser c satuan ke bawah jika c 0 maka grafiknya y = ax2 + bx + c memiliki titik puncakminimum. Jika a < 0 maka grafik y = ax2 + bx + c memiliki titik pucak Nilai c pada grafik y = ax2 + bx + c menunjukkan titik perpotongan grafik fungsi kuadrat tersebut dengan sumbu – y, yakni pada koordinat c,0.9. Cara menyusun fungsi kuadrat dengan syarat tertentua. Diketahui titik potong dengan sumbu x dan satu titik yang dilalui = − 1 − 2b. Diketahui titik puncaknya dan satu titik yang dilalui = − 2 + DAFTAR PUSTAKAYuliati, Yuyun. Modul Pengayaan Matematika Kelas 7 SMP/MTs Semester 1 Kurikulum 2013. Jakarta DutaAs’ari, Abdur 2017. Matematika SMP/MTs kelas IX semester 1 Kurikulum 2013 Edisi Refisi 2017. Jakarta KEMENTRIANPENDIDIKAN DAN KEBUDAYAAN REPUBLIK INDONESIA.
Kelas 9 SMPFUNGSI KUADRATPemecahan Masalah Melibatkan Sifat-Sifat Fungsi KuadratGrafik fungsi y= ax^2 + bx + c tampak seperti pada gambar berikut. x y Jika nilai diskriminasinya dinyakatan oleh D, maka pernyataan yang benar adalah... A. a >0; c>0; D>0 B. a>0; c>0; D>0 C. a0; D>0 D. a<0; c=0; D=0Pemecahan Masalah Melibatkan Sifat-Sifat Fungsi KuadratFUNGSI KUADRATALJABARMatematikaRekomendasi video solusi lainnya0155Koordinat titik balik grafik fungsi kuadrat fx = 2x^2 -...0208Grafik fungsi y= ax^2 + bx + c tampak seperti pada gamba...0253Diketahui fungsi kuadrat fx=2x^2-7x-5 serta titik A2,...0632Sebidang tanah berbentuk persegi panjang berukuran panjan...Teks videojika kita memiliki soal seperti ini, maka untuk menentukan pernyataan yang benar apabila nilai diskriminannya dinyatakan oleh kita dapat diidentifikasi yang pertama terbuka ke bawah maka kita bisa katakan koefisien daripada A itu nilainya kurang daripada 0 adalah koefisien dari pada variabel x kuadrat kemudian berikutnya perpotongan sumbu y di titik a gunakan rumus x = 0 atau bisa juga gunakan 0,2 maka jika kita lihat pada gambar di sini perpotongan sumbu y itu terletak pada 0 koma min 6 C maka nilai C itu pastilah kurang daripada 0Sudah memiliki 2 a kurang dari 0 dan C kurang dari nol. Nah berikutnya kita akan lihat untuk nilai diskriminannya. Perhatikan pada gambar kita punya titik puncak ya kita misalkan dengan x koma y x nya bernilai positif kemudian Y nya bernilai negatif maka kita bisa Tuliskan nilai maksimum dari pada fungsi y itu = d - 4 A Y nya tadi bernilai negatif kemudian = diskriminan dibagi a nya juga tadi nilainya kurang dari nol berarti negatif negatif dikalikan - 4 berarti negatif kali negatif hasilnya maka supaya hasilnya sama dengan negatif maka diskriminannya sudah pasti nilainya haruslah negatif maka diskriminan kurang daripada 0maka jawabannya yang sesuai adalah opsi demikian sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
menggambar grafik fungsi y ax2